Applying Usability Engineering to the Problems of Telepresence and Data Exploration

Oregon State University collaboration:

NACSE (Northwest Alliance for Computational Science & Engineering)

Dept. of Civil, Construction, and Environmental Engineering

Hinsdale Wave Research Lab

NACSE Oregon State University

Re-Engineering the Wave Research Lab

Extend the capacity of the physical facility Largest tsunami research facility in the world Support 3-D bathymetry (real-world seabed and shoreline shapes)

Enhance effectiveness of WRL researchers through usability engineering

Applying Usability Engineering

Human factors

Characteristics, capabilities and limitations of human beings

How these affect our use of technology

Usability engineering

Addresses human factors explicitly during design process

To improve system effectiveness and safety
To improve user productivity

NACSE Oregon State University

Why Is Usability Engineering Important?

A system that doesn't

Respond to user needs
Align with user
processes

Accommodate user expertise

may be worse than no system at all!

Usability Engineering and NEES

UE can make it possible for researchers to

Control and observe experiments from remote sites

Reduce requirement for on-site presence

Gain more from experimental processes

Exploit technology to enhance human observation

Share experiments with colleagues and students
Broaden <u>participation</u> in experiments
Extend <u>useful lifetime</u> of experimental processes

Exploit corpus of experimental results

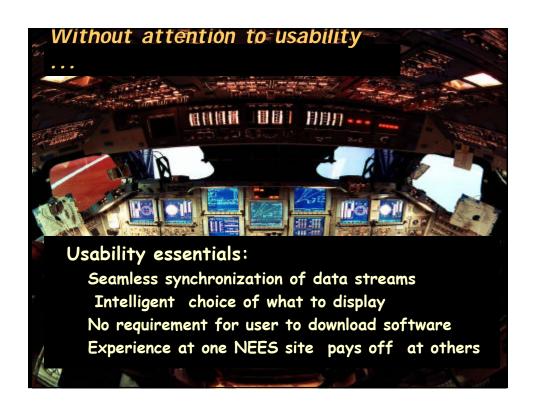
Facilitate <u>re-use</u> of previous experimentation

Support <u>integration</u> of computational and experimental modeling

NACSE Oregon State University

Telepresence: The Raw Ingredients

Sensor data: raw, filtered, graphical summaries


10s to 100s of devices operating concurrently

Data streams from remotely operable cameras and microphones

10s of devices at eye level, suspended from roof, and underwater

Robotic controls

Use of computation to merge/analyze realtime data streams

Engineering the User Experience

Role 1: Steering and observing the <u>remote</u> <u>experiment</u>

Researcher(s) sets up and directs experiment in near-real-time $\ \ \,$

Colleagues from same/other institutions participate
Observe/assimilate/discuss varying sets of data streams

Role 2: After-the-fact experiment replay

Researcher(s) observe experiment in simulated time Identify subsets of data streams for targeted uses

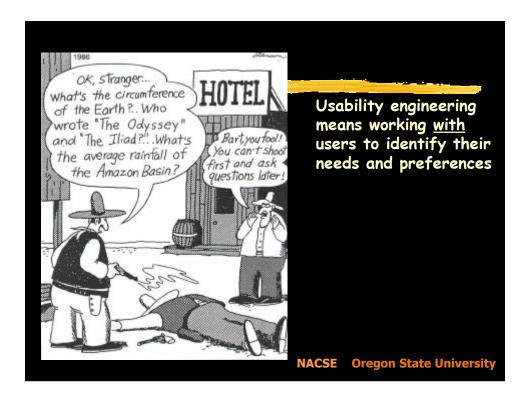
Issues in Remote Steering/Observation

Goal: Make remote experimentation efficient and useful

Helping PIs select optimal control settings
Acquiring metadata only the PI can furnish
Placing audio/video effectively
Integrating sensor data into meaningful summaries
Intelligent management of displays
Instant Replay to improve on traditional viewing
Electronic Lab Notebook: saving/annotating
records for personal use

NACSE Oregon State University

Issues in Experiment Replay


Goal: Make it possible to derive real benefit from others' experiments

Generating markers for interesting events in sensor and audio/video streams

Zooming forward through simulated time to next event, then slow-stepping through critical data sequences

Synchronized access to raw/filtered/summarized data

Ability to download arbitrary sequences of data

Data Exploration: The Raw Ingredients

Extremely large quantities of data must be archived and made publicly available
Synchronization markers must be added
Diverse data formats need to be integrated
Metadata need to be standardized
Must be possible to compare experimental
data with data from simulations

Engineering the User Experience

<u>Tsunami Experiment Databank</u> archives all aspects of NEES experiments

Role 3: Single or collaborative researchers use search-and-exploration interfaces

So duplication can be eliminated So models can be calibrated So model results can be validated

NACSE Oregon State University

Issues in Databank Exploration

Goal: Make searching flexible enough to quickly locate appropriate experiments

Generating most metadata automatically during data acquisition/processing

Multi-tiered interfaces that support typical user scenarios:

Experiments involving certain wave configurations Experiments involving certain types of models Experiments yielding particular types of results Find experiments similar to this one

